Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

First total synthesis of 11-tellura steroids

Malika Ibrahim-Ouali*

Institut des Sciences Moléculaires de Marseille, UMR 6263 CNRS and Université d'Aix Marseille III, Faculté des Sciences et Techniques de Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

ARTICLE INFO

ABSTRACT

Article history: Received 29 March 2010 Revised 4 May 2010 Accepted 5 May 2010 Available online 12 May 2010 The first total synthesis of 11-tellura steroids was achieved via an intramolecular Diels-Alder cycloaddition of *o*-quinodimethanes as the key step.

© 2010 Elsevier Ltd. All rights reserved.

Keywords: 1,8-Bis(trimethylsilyl)-2,6-octadiene Tellura steroids Intramolecular Diels-Alder reaction Thermolysis

Since the first total synthesis of equilenin and estrone in 1939,¹ many steroids have been prepared using several different strategies. Important progress in steroid synthesis comes from the strategy involving an intramolecular Diels–Alder cycloaddition of *o*quinodimethanes which are mostly generated by thermal ring opening of benzocyclobutenes.²

Since it has been proven that the introduction of a heteroatom in the steroidal moiety could have a biological impact, heterosteroids have been known to have a revival of interest.³ Thus, it has been reported that replacement of the 11-carbon atom of the pregnane skeleton resulted in interesting modifications of the biological activities.⁴ For example, anti-bacterial⁵ and neuromuscularblocking activities⁶ have been found for some aza steroids.

We have recently reported the first total synthesis of 11-selena steroids.⁷ In connection with our ongoing interest in the total synthesis of steroids, we were also interested in the synthesis of 11-tellura steroids. Compounds containing selenium can possess biological properties and have been used as antiviral, antihypertensive, antibacterial or chemopreventive anticancer agents.⁸ In the same way, compounds containing tellurium have a great potential for the creation of a new library of molecules important for biological applications.

To the best of our knowledge, there are very few syntheses of tellurasteroids⁹ and there is no total synthesis of 11-tellura steroids reported in the literature before.

* Tel.: +33 0491288416. E-mail address: malika.ibrahim@univ-cezanne.fr In this Letter, we wish to report an efficient method for the preparation of 11-tellura steroids using a thermolysis of benzocyclobutenic intermediates as the key step. It is therefore hoped that this reaction occurs with good stereoselectivity to provide the carbocyclic framework of the naturally occurring A-ring aromatic steroids.

Recently, we showed that BISTRO **1** can be obtained by simple acyclic cross metathesis from 1,5-hexadiene and allytrimethysilane, using Grubbs's ruthenium catalyst (5 mol %) [$(Cy_3P)_2Cl_2Ru$ = CHPh]¹⁰ in CH₂Cl₂ at room temperature under argon atmosphere. BISTRO was obtained as a mixture of (*Z*,*Z*) and (*E*,*E*) isomers in a 60:40 ratio.⁷

The starting compound **3** was easily accessible by a procedure reported by us recently,⁷ via a treatment with NaI in acetone of (d,l)-2,5-divinylcyclopentan-1-ol **2**, prepared by condensation of BISTRO **1** with chloroacetic anhydride (Scheme 1).¹¹

We adopted a convergent steroid synthesis, based on the approach $A + D \rightarrow AD \rightarrow ABCD$. The strategy developed in our laboratory to prepare heterosteroids involved an intramolecular cycloaddition of *o*-xylylenes which are generated by thermal ring opening of a benzocyclobutene.¹² This methodology has a remarkable advantage for the formation of the B/C cycle. Thus, iodohydrine **3** was dissolved in dry ethanol containing sodium telluride¹³ and heated under reflux for 48 h to give an intermediate which was alkylated in situ with 1-iodo-5-methoxybenzocyclobutene **4**,¹⁴ providing a convenient way to produce **5**.¹⁵ Despite the fair yield, obtaining the key (d,l)-cyclobutene **5** constitutes a very interesting result. Indeed, thermolysis¹⁶ of this latter yielded a 8:2 mixture of two diastereoisomers **6a** and **6b** in a 58% overall yield. These tellura steroids were separated by flash chromatography on silica gel (Scheme 1).

Scheme 1. Synthesis of 11-tellura steroids from BISTRO 1.

Scheme 2. Stereochemistry of the major isomer 6a.

The torquoselectivity in the electrocyclic conversion of benzocyclobutenes into *o*-xylylenes has been previously discussed.¹⁷ Generally, a pronounced preference for outward rotation is observed in the case of electron-donating substituents borne by the benzocyclobutene.

The relative stereochemistry of those steroids was determined by a series of 1D NMR, COSY and NOESY experiments (400 MHz). The steroids **6a** and **6b** have, respectively, a *trans-anti-trans* and a *cis-anti-cis* ring fusion.¹⁸ Interestingly, the main product **6a** matches the *trans-anti-trans* ring fusion configuration of natural products (Scheme 2). For **6a**, a NOESY cross peak was observed between H-(9) and H-(14). The *trans* relationship between H-(8) and H-(9) was confirmed by the vicinal coupling constant J = 10.4 Hz for **6a** and for **6b** the value is 4.3 Hz corresponding to a *cis* relationship. The presence of tellurium was confirmed by their mass spectra,¹⁸ ¹H NMR (δ (H-9) = 2.90 ppm for **6a** and δ (H-9) = 2.65 ppm for **6b**) and ¹³C NMR (δ (C-9) = 32.2 ppm for **6a** and **6b**; δ (C-12) = 27.2 ppm for **6a** and δ (C-12) = 27.4 ppm for **6b**).

The palladium (II) oxidation of terminal olefins to give methyl ketones (Wacker process) was well established as a synthetic organic reaction.¹⁹ Terminal olefins can be regarded as masked methyl ketones.

First attempts conducted on **6a** with cuprous chloride, oxygen and palladium acetate²⁰ failed to give the desired ketone. Unfortunately, palladium acetate–benzoquinone oxidation, performed in the presence of perchloric acid,²¹ failed also to oxidize compound **6a** [Pd(OAc)₂, 10%; benzoquinone; HClO₄ (0.3 M); acetonitrile]. In the two cases, starting material was recovered unchanged (Scheme 3). Interesting is to note that this problem²² of oxidation was also observed with 11-thia and 11-selena steroids but not with 11oxa¹¹ and 11-aza²³ steroids reported previously.

In conclusion, we have succeeded in introducing for the first time a tellurium atom onto the steroid skeleton by use of a simple synthetic sequence based on an intramolecular cycloaddition of *o*xylylene. Moreover, the tellurium atom occupies a position of established biological importance.⁴ Studies to extend our strategy to other heterocyclic structures are currently underway and will be reported in due course.

Acknowledgements

This work has been financially supported by the CNRS and the Ministère de l'Enseignement Supèrieur et de la Recherche.

Scheme 3. Attempt of Wacker-type oxidation of 6a.

References and notes

- 1. Bachman, W. E.; Cole, W.; Wilds, A. L. J. Am. Chem. Soc. 1939, 61, 974.
- 2. (a) Oppolzer, W. J. Am. Chem. Soc. 1971, 93, 3833; (b) Oppolzer, W. J. Am. Chem. Soc. 1971, 93, 3834; (c) Oppolzer, W.; Keller, K. J. J. Am. Chem. Soc. 1971, 93, 3836; (d) Kametani, T.; Nemoto, H.; Ishikawa, H.; Shiroyama, K.; Matsumoto, H.; Fukumoto, K. J. Am. Chem. Soc. 1977, 99, 3461; (e) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10; (f) Oppolzer, W. Synthesis 1978, 793; (g) Kametani, T.: Nemoto, H. Tetrahedron 1981, 37, 3; (h) Nemoto, H.: Fukumoto, K. Tetrahedron 1998, 54, 5425.
- Engel, Ch. R.; Mukherjee, D.; Roy Chowdhury, M. N. Steroids 1986, 47, 381. 3
- (a) Engel, C. R.; Rastogi, R. C.; Roy Chowdhury, M. N. Steroids 1972, 19, 1; (b) 4 Engel, C. R.; Salvi, S.; Roy Chowdhury, M. N. Steroids 1975, 25, 781; (c) Gumulka, M.: Ibrahim, I. H.: Bonczatomazewski, C. R. Can. I. Chem. 1985, 63, 766; (d) Morand, P.; Lyall, J. Chem. Rev. 1968, 68, 85; (e) Huisman, H. O. Angew. Chem., Int. Ed. Engl. 1971, 10, 450.
- Chesnut, R. W.; Durham, N. N.; Mawsdsley, E. A.; Berlin, R. A. Steroids 1976, 525. 5 (a) Singh, H.; Paul, D.; Parashar, V. V. J. Chem. Soc., Perkin Trans. 1 1973, 1204; (b) Singh, H.; Paul, D. J. Chem. Soc., Perkin Trans. 1 1974, 1475; (c) Singh, H.; Bhardwaj, T. R.; Ahuju, N. K.; Paul, D.; Parashar, V. V. J. Chem. Soc., Perkin Trans. 1 1979. 305.
- Ibrahim-Ouali, M. Tetrahedron Lett. **2009**, 50, 1607. 7
- (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. *Chem. Rev.* **2004**, *104*, 6255; (b) Mugesh, G.; du Mont, W. W.; Sies, H. *Chem. Ver.* **2001**, *101*, 2125. 8.
- Suginome, H.; Yamada, S.; Wang, J. B. J. Org. Chem. **1900**, *55*, 2170. Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413. q
- 10.
- Cachoux, F.; Ibrahim-Ouali, M.; Santelli, M. Tetrahedron Lett. 2000, 41, 1767. 11
- (a) Kametani, T.; Fukumoto, K. Heterocycles 1975, 3, 29; (b) Kametani, T.; Kato, 12. Y.; Honda, T.; Fukumoto, K. Heterocycles 1976, 4, 241; (c) Kametani, T.; Nemoto, H.; Ishikawa, H.; Shiroyama, K.; Fukumoto, K. J. Am. Chem. Soc. 1976, 98, 3378; (d) Kametani, T.; Matsumoto, H.; Nemoto, H.; Fukumoto, K. J. Am. Chem. Soc. **1978**, 100, 6218.
- 13. (a) Suzuki, H.; Inoue, M. Chem. Lett. 1985, 389; (b) Sodium telluride was prepared as follows: a mixture of powdered tellurium (130 mg, 1.02 mmol), rongalite (sodium hydroxymethane sulfinate) (340 mg) and aqueous sodium hydroxide (70 mg in 1 mL of water) was stirred at 60 °C for 2 h under argon, to produce sodium telluride. The wine-colored solution was evaporated to dryness under reduced pressure.
- 14 Stevens, R. V.; Bisacchi, G. S. J. Org. Chem. 1982, 47, 2393.
- The compound 5 is sensitive to oxygen, and was stored under argon atmosphere. The latter was unstable under the conditions of silica gel

chromatography and was used in the following step without further purification.

- 16. The typical procedure of thermolysis is as follows: a solution of 5 (0.5 g, 1.20 mmol) in 20 mL of o-xylene was stirred under argon at 130 °C for 12 h. After cooling, the solvent was removed under pressure (1 mmHg). The resulting oil was purified by flash chromatography on silica gel (petroleum ether/diethyl ether 8:2) to afford compound 6a (0.23 g, 46%) and compound 6b (0.06 g, 12%). Those compounds are sensitive to oxygen, and were stored under an argon atmosphere.
- 17. Jefford, C. W.; Bernardinelli, G.; Wang, Y.; Spellmeyer, D. C.; Buda, A.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 1157.
- The configuration of the products was established by analysis of their ¹H, ¹³C, 18. COSY and NOESY NMR 400 MHz spectra. Selected spectral data are as follows. Compound 6a: ¹H NMR (400 MHz, CDCl₃) & 1.25-1.50 (m, 6H), 1.60 (d, J = 13.2 Hz, 1H), 1.68 (m, 1H), 2.80 (m, 1H), 1.72 (d, J = 13.2 Hz, 1H), 2.26 (m, 2H) 2.80 (m, 2H) 2.90 (d, J = 10.4 Hz, 1H), 3.70 (s, 3H), 5.03 (m, 2H), 5.64 (m, 1H), 6.72 (dd, J = 2.6 Hz, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 2.6 Hz, 1H); ¹³C NMR (100 MHz, CD₃CN): δ 23.4, 25.8, 27.2, 28.1, 28.9, 29.6, 32.2, 54.2, 55.6, 57.9, 76.5, 109.7, 112.4, 115.7, 117.4, 129.8, 135.6, 139.6, 157.8. HRMS (EI): *m/z*: calcd for C₁₉H₂₄O₂Te: 414.0839, [M⁺]; found: 414.0856. Compound **6b**: ¹H NMR (400 MHz, CDCl₃) δ 1.60 (m, 2H), 1.70 (m, 3H), 1.80 (m, 1H), 1.25 (m, 2H), 2.05 (d, *J* = 13.2 Hz, 1H), 2.10 (m, 3H), 2.30 (d, *J* = 13.2 Hz, 1H), 2.35 (m, 1H), 2.65 (d, *J* = 4.3 Hz, 1H), 3.77 (s, 3H), 5.09 (m, 2H), 5.89 (m, 1H), 6.70 (dd, J = 2.76 Hz, J = 8.4 Hz, 1H), 6.95 (d, J = 8.4 Rz, 1H), 7.09 (d, J = 2.76 Hz, J = 8.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 2.77 Hz, 1H); ¹³C NMR (100 MHz, CD₃CN): δ 25.2, 25.8, 27.4, 28.3, 29.1, 29.6, 32.2, 54.6, 56.2, 58.1, 76.8, 110.2, 112.4, 116.2, 117.8, 129.3, 134.2, 139.8, 157.9. HRMS (EI): *m/z*: calcd for C₁₉H₂₄O₂Te: 414.0839, [M⁺]; found: 414.0852.
- (a) Tsuji, J. Synthesis 1984, 369; (b) Tsuji, J.; Nagashima, H.; Nemoto, H. Org. 19 Synth. 1984, 62, 9; (c) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: London, 1985.
- 20. Tsuji, J.; Shimizu, I.; Yamamoto, K. Tetrahedron Lett. 1976, 2975.
- Miller, D. G.; Wayner, D. D. M. J. Org. Chem. 1990, 55, 2924. 21.
- For these three families of heterosteroids (11-thia, -selena and -tellura steroids), we observed an influence of the heteroatom on the Wacker oxidation reagents. In the case of 11-thia steroids, to overcome this problem, the sulfur atom was firstly oxidized before doing the Wacker oxidation. This study on 11-selena and 11-tellura steroids is under progress and will be reported in due course as a full Letter.
- (a) Cachoux, F.; Ibrahim-Ouali, M.; Santelli, M. Tetrahedron Lett. 2001, 42, 843; 23. (b) Cachoux, F.; Ibrahim-Ouali, M.; Santelli, M. Synth. Commun. 2002, 32, 3549.